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In this paper, we view fluctuating fronts made of particles on a one-dimensional lattice as an extreme value
problem. The idea is to denote the configuration for a single front realization at timet by the set of co-ordinates
hkistdj;fk1std ,k2std , . . . ,kNstdstdg of the constituent particles, whereNstd is the total number of particles in that
realization at timet. Whenhkistdj are arranged in the ascending order of magnitudes, the instantaneous front
position can be denoted by the location of the rightmost particle, i.e., by the extremal valuekfstd
=maxfk1std ,k2std , . . . ,kNstdstdg. Due to interparticle interactions,hkistdj at two different times for a single front
realization are naturally not independent of each other, and thus the probability distributionPkf

std (based on an
ensemble of such front realizations) describes extreme value statistics for a set of correlated random variables.
In view of the fact that exact results for correlated extreme value statistics are rather rare, here we show that
for a Fermionic front model in a reaction-diffusion system,Pkf

std is Gaussian. In a Bosonic front model,
however, we observe small deviations from the Gaussian.
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I. INTRODUCTION

Extreme value statistics of random variables plays a di-
verse role in physics, chemistry, and biology[1–3]. The topic
concerns the probability distributions of the extrema(i.e., the
maximumkmax or the minimumkmin) of a set ofN random
variableshk1,k2, . . . ,kNj in the limit N→`. When the ran-
dom variableski are uncorrelated, the probability distribution
of kmin belongs to one of the three universality classes[4],
but the identification of similar universality classes for the
extreme value statistics of correlated random variables is still
largely an open problem. A few results relating to extreme
value statistics for correlated random variables in physics,
computer science, and mathematics have been obtained in
the recent past[5,6]; nevertheless, any exact result that can
be obtained for correlated random variables is an important
addition to the present state of knowledge.

From this perspective, in this paper, we present two main
results relating to fluctuating fronts made of discrete particles
on a one-dimensional lattice. Before we proceed further with
our formulation of the problem, we must note that an intrigu-
ing connection between the extreme value statistics of corre-
lated random variables and traveling fronts has already
emerged from the recent works[6,7]. To be more precise,
these works have demonstrated, for the models they studied,
that the cumulative probability distributions of extreme val-
ues for correlated random variables admit propagating front
solutions, where in the variance of the extremal variable is
the front width itself. Our formulation here, however, is com-
pletely the other way around: namely that our systems con-
sist of manyinteractingparticles, where the dynamics of the
systemsalreadyadmits front solutions propagating into un-
stable states. Although in a deterministic mean-field descrip-
tion, these fronts propagate with a fixed speed and a fixed
shape at long times, due to the presence of stochasticity in-
volving many particles, the front in a given realization of the
system does not move with a uniform speed even at long
times—instead, the front speed averaged over an ensemble

of front realizations approaches a constant in time at long
times. Moreover, as a result of the inherent stochasticity in
these systems, the individual front realizations that are ini-
tially aligned with each other do not remain so at a later
time; instead their displacement with respect to each other
keeps increasing with time(see Fig. 4 of Ref.[8] for an
illustration). As explained below, it is the dynamics of the
individual front realizations in the ensemble that we pose as
a correlated extreme value problem in this paper.

The correspondence between the extremal value statistics
and the fluctuating fronts in these systems is easily made by
first noticing that in any realization of these systems, the
front position can be denoted by the instantaneous position
kfstd of the foremost(or the rightmost) particle [9,10]. The
interest then lies in the probability distributionPkf

std, which
describes the statistics of the front position in time for an
ensemble of front realizations. Secondly, in a snapshot of one
single realization, the configuration of the system is de-
scribed by the locations of the particles(as random variables)
hkistdj;fk1std ,k2std , . . . ,kNstdstdg, where Nstd is the total
number of particles in that realization at timet. Then the
instantaneous front positionkfstd in this formulation is then
simply the extremal value maxfk1std ,k2std , . . . ,kNstdstdg. Due
to the interparticle interaction within the system defined by
the microscopic rules of the dynamics,hkistdj are naturally
not independent of each other, and thusPkf

std simply de-
scribes the statistics of the extreme for a set of correlated
random variables.

In this paper, we consider two different systems that admit
front solutions propagating into unstable states:(a) a Fermi-
onic reaction-diffusion systemA�A+A [10–12] in Sec. II,
where we show thatPkf

std is Gaussian, and(b) the so-called
(Bosonic) clock model [13] in Sec. III, wherePkf

std has
small deviations from the Gaussian. It is important to note
here that the front solutions in these models have been ana-
lyzed before, in the sense that both the front speed
v=limt→` dkkfstdl /dt and the front diffusion coefficient
Df =limt→` dkfkfstd−vtg2l /dt, respectively based on the first
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and the second moments ofPkf
std, have previously been ana-

lyzed and numerically measured[8,10–14]. The higher(than
second) moment ofPkf

std, or Pkf
std itself, however, have not

been extensively studied before. The paper is finally ended
with a discussion in Sec. IV.

II. A FERMIONIC REACTION-DIFFUSION MODEL
AND GAUSSIAN BEHAVIOR OF Pkf

„t…

In this model, we consider a one-dimensional lattice on
which at most oneA particle is allowed per lattice site at any
instant—hence the model is named Fermionic. The particles
can undergo the following three basic moves, shown in Fig.
1: (i) A particle can diffuse to any one of its neighbor lattice
sites with a diffusion rateD, provided this neighboring site is
empty.(ii ) Any particle can give birth to another one on any
one of its empty neighbor lattice site with a birth rate«. (iii )
Any one of two A particles belonging to two neighboring
filled lattice sites can get annihilated with a death rateW.

The lattice indexed byk that we consider in this problem
is semi-infinite. The left boundary is impenetrable—no par-
ticle can diffuse across the left boundary located on the left
of the lattice sitek=0, while the system is of infinite extent
on the right side. Following the usual convention, we start
with a step initial condition, i.e., at timet=0, there exists a
finite kright, such that all lattice sites 0økøkright are occupied
andk.kright are empty. This system then admits a fluctuating
(and propagating) front solution fort.0.

Earlier work on models of this type has appeared in Refs.
[10–12,15]. In the general case there are essentially only two
nontrivial parameters in our model, e.g., the ratiosD /« and
D /W, since an overall multiplicative factor simply sets the
time scale. When these ratios tend to infinity, the front speed
approaches its mean field value[11].

For an ensemble of front realizations, let us denote the
probability distribution for the foremost occupied lattice site
to be at lattice sitekf at time t by Pkf

std. The evolution of
Pkf

std is then described by

dPkf

dt
= sD + «dPkf−1 + fDPkf+1

empty+ WPkf+1
occ g

− sD + «dPkf
− fDPkf

empty+ WPkf

occg. s1d

HerePkf

occstd andPkf

emptystd respectively denote the joint prob-
abilities that the foremost particle is at sitekf and that the site
kf −1 is occupied and empty. Clearly,Pkf

std=Pkf

occstd
+Pkf

emptystd, andokf
Pkf

std=1. The first term on the right-hand
side of Eq.(1) describes the increase inPkf

std due to the
advance of a foremost occupied lattice site from position
kf −1, while the second term describes the increase inPkf

std
due to the retreat of a foremost occupied lattice site from
position kf +1. The third and the fourth terms respectively
describe the decrease inPkf

std due to the advance and retreat
of a foremost occupied lattice site from positionkf. It is clear
from this formulation that the dynamics ofPkf

std is effec-
tively obtained only from the coupled interaction between
the foremost particle and the site just behind it.

In addition to Eq.(1), we have

Pkf

occstd = rkf−1stdPkf
std, s2d

where rkf−1std is the conditional probability of having the
skf −1dth lattice site occupied. At larget, rkf−1std should be
independent ofkf and t, and one can replacerkf−1std by r̄ in
Eq. (2), where the numerical value ofr̄ depends only on
those of D, «, and W. Similarly, the set of(time and kf
independent) conditional occupation densitiesrkf−mstd for
mù1 can be thought of as determining the front profile in a
frame moving with the foremost particle of each front real-
ization (see Fig. 5 of Ref.[10] for an illustration).

With the conditionPkf
std=Pkf

occstd+Pkf

emptystd, and the nota-
tion q= r̄sW−Dd, at larget, Eq. (1) can be rewritten as

dPkf

dt
=

1

2
s2D + « + qd fPkf+1 + Pkf−1 − 2Pkf

g

−
1

2
s« − qdfPkf+1 − Pkf−1g, s3d

which is clearly a diffusion equation forPkf
std with a drift.

After having aligned the locations of the foremost particles
for all realizations in the ensemble, say atkf =kin at time tin
@1 [i.e., Pkf

stind=dkf,kin
], we are interested in the solution of

Pkf
std. In fact, Eq. (3) can be solved by taking a discrete

Fourier transform inkf, but due to the redundancy of the
wave-vector modulo any multiple of 2p, the magnitude of
the wave vector has to be kept confined only within the first
Brillouin zone s−p ,pg. Then for Dt= t− tin@1, it is easily
seen that the dominant contribution toPkf

std comes from the
wave vector in the neighborhood of zero, yielding[16]

Pkf
std =

expF−
skf − kin − vDtd2

4DfDt
G

Î4pDfDt
. s4d

Here, v=«−q is the front speed andDf =2D+«+q is the
front diffusion coefficient, as already derived as the first and
the second moment ofPkf

std in Ref. [10].

FIG. 1. The microscopic processes that take place inside the
system.(i) A diffusive hop with rateD to a neighboring empty site;
(ii ) creation of a new particle on a site neighboring an occupied site
with rate «; (iii ) annihilation of a particle on a site adjacent to an
occupied site at a rateW.
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III. CLOCK MODEL AND THE NON-GAUSSIAN
BEHAVIOR OF Pkf

„t…

The clock model was originally invented in the context of
the largest Lyapunov exponent for a gas of hard spheres[13].
In this model, one considers a system ofN clocks with inte-
ger readingshkij. The dynamics of the clocks involve binary
“collisions” between any two randomly chosen clocks in
continuous time. In a collision between two clocks with pre-
collisional readingski andkj, the post-collisional readings of
both clocks are updated to maxfki ,kjg+1.

In the clock reading space, which can be imagined as a
one-dimensional lattice, the number of clocksNk with read-
ingsk or higher for any realization of the clock model admits
a fluctuating (and propagating) front solution [13]. Clock
model allows more than one clock with the same reading and
hence the model is Bosonic. Conventionally, all clock read-
ings in any realization are initially(i.e., att=0), taken to be
equal to zero—for the propagating front, this corresponds to
the step initial condition[13]. Once again we denote the
largest clock reading in any realization at timet by kfstd.

In the deterministic mean-field limit, the propagating front
in the clock model is a pulled front[17], and if the time is
rescaled in order to have the mean collision frequency of a
single clock equal to unity, the front propagates with a speed
v* =4.311 07̄ [13]. However, due to stochasticity effects
associated with discreteness effects of the clocks and their
readings, in the limit of asymptotically largeN, the front
speedv and front diffusion coefficientDf, which could be
measured following the procedure described in the last para-
graph of Sec. I, have the property thatsv* −vd~1/ ln2 N and
Df ~1/ ln3 N [14]. Thus the clock model is an example of a
fluctuating “pulled” front[8,9,14].

To write a master equation forPkf
std defined over an en-

semble in the clock model, it may be argued that the reading
of any clock in any realization can only increase with time;
and thus,Pkf

std can increase when in a realization, one of the
clocks with largest readingkf −1 is involved in a collision
with another one. Similarly,Pkf

std can decrease when in a
realization, one of the clocks with largest readingkf is in-
volved in a collision with another one. If we now denote the
conditional probability of the number of clocks with largest
readingkf to benkf

std at timet by Psnkf
,td, the master equa-

tion for Pkf
std reads

dPkf

dt
= F o

nkf−1

Csnkf−1d Psnkf−1,tdGPkf−1

− Fo
nkf

Csnkf
d Psnkf

,tdGPkf
. s5d

Here, Csnkf
d is the rate of collisions that involve a clock

with readingkf for a realization withkf as the largest of the
clock readings. From Eq.(5), one might now further argue
that at larget, the quantities within the large square brackets
in Eq. (5) are independent oft and kf, and thus at larget,
Eq. (5) should reduce to a formdPkf

/dt= c̄fPkf−1−Pkf
g,

where c̄=fonkf
Csnkf

dPsnkf
,tdg at large t. However, for any

finite value of N, the simple-minded replacement of
fonkf

Csnkf
dPsnkf

,tdg by a t and kf-independent quantityc̄ in

Eq. (5) at larget is incorrect for the clock model—caused by
the fact thatPsnkf

,td does not become time independent at
large t [20]—as we argue below.

The observation we make, in order to argue thatPsnkf
,td

does not become independent oft at larget, is that the largest
clock reading in any realization does not increase smoothly
in time with a ratev even at larget. Instead, after attaining a
new integer value, the largest of the clock readings for any
given realization does not change for some time interval
(hereafter denoted bydt) of typical magnitude 1/v before
attaining the next integer value[18]. Generally speaking,
during any of these time-intervals, the number of clocks with
the largest clock reading in any realization increases with
time; and the number of clocks with the largest reading at
any instant in a given realization depends on how long the
largest clock reading remains unchanged at its value. The
conditional probabilityPsnkf

,td can thus be written as

Psnkf
,td =E

0

`

dsdtd`1sdt,td`2snkf
,dt,td, s6d

where`1sdt ,td is the probability that the largest clock read-
ing becamekf at time st−dtd and remained so until timet,
and `2snkf

,dt ,td is the probability of havingnkf
clocks at

time t for those realizations where the largest clock reading
becamekf at timest−dtd and remained unchanged atkf until
time t. Using Eq.(6), the t dependence ofPsnkf

,td can then
be arguedin terms of the t dependences of`1sdt ,td and
`2snkf

,dt ,td.
With Eq. (6) in the back of our minds, we now return to

the statement to the second sentence of Ref.[18]: namely
that front propagation in any realization of the clock model is
coded in thesequentialvalues of the time intervalshdtij be-
tween the consecutive changes of the largest clock reading.
In this description, the point to note is that thedti values are
very strongly correlated with each other; e.g., a largedt is
almost always followed by several small values ofdt and
vice versa(the large or smallness ofdt are decided in com-
parison to 1/v) [8,9]. Due to such strong dependence of the
dt values on the evolution histories of individual realizations,
it is easily conceivable that the shape of the probability dis-
tribution `1sdt ,td lacks t independence at larget.

The t dependence of̀ 2snkf
,dt ,td can be argued in a simi-

lar way. In realizations for which the largest clock value
becamekf at timest−dtd and remained unchanged atkf until
time t, how many clocks share the largest clock reading at
time t depends on the time dependence of the number of
clocks nkf−1 with clock readingsskf −1d between timesst
−dtd andt—after all, any clock that attains a readingkf must
come out of a collision that involves a clock with reading
skf −1d. Between timesst−dtd andt, nkf

−1 changes also with
time, and thus the probability distributioǹ2snkf

,dt ,td inher-
ently connects to thefluctuations in the shapes of individual
front realizations[8,14]. These fluctuations have a typical
correlation time~ln2 N [8,14,19]. ForN→`, this correlation
time also becomes large, and one therefore expects the shape
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of `2snkf
,dt ,td to also depend ont via the strong dependence

of nkf−1 on the evolution histories of individual realizations at
earlier times.

With no further simplification of Eq.(5) possible, let
alone an exact solution forPkf

std as in Eq.(4), we can study
Pkf

std for the clock model only via simulation. Our(molecu-
lar dynamics) simulation methods are as follows: we choose
an ensemble ofN=50 000 realizations ofN=104 clocks and
set all clock values zero att=0. We then let each realization
evolve until timetin=800 units. Attin, we align the different
realizations in such a way that the largest of all the clock
values coincide atk=kin. We then follow the locations of the
largest clock values for each realization until
t− tin=400. We also repeat the calculations for the same val-
ues ofN, tin and kin but for N=105. The ensemble average
kkfstd−kinl and kfkfstd−king2l for N=50 000 as a function of
st− tind both for N=104 and 105 have been shown in Fig. 2.

To obtainPkf
std numerically from the above data, we now

proceed in the following way. First we select two different
time instants for each value ofN to take snapshots of the
entire ensemble ofkf values: forN=104, we chooset= tin
+99 andtin+297, and forN=105, we chooset= tin+198 and
tin+396. Having used the best fit method from the data of

Fig. 2, we then identify the location of the mean front posi-
tion k0std and the standard deviations0std [s0std effectively
behaves as,Î2Dfst− tind as seen in the bottom plot of Fig. 2
for large st− tind], for two different values ofN at these dif-
ferent time instants. Finally, with the histograms
Nskf ,td / fNs0stdg plotted as a function offkf −k0stdgg /s0std,
whereNskf ,td is the number of realizations with largest of
the clock valueskf at timet, we expect a good data collapse,
and the corresponding curve then gives us the normalized
Pkf

std. Notice that the procedure that we followed to obtain
k0std and s0std [and subsequently the numerical curve for
Pkf

std] at the above time instants does not guaranteekkfstdl
−k0std;0 and kfkfstd−k0std2gl;s0

2std; instead, thekkfstdl
−k0std and thekkfstd−k0std2l /s0

2std values are in fact very
close to zero and unity, respectively.

This data collapse is shown by means of the numerically
obtained dotted curve in Fig. 3.Further analysis of the data
(not presented here) clearly shows that the dotted curve does
not belong to any of the known universality classes[4] for
the extreme value statistics of uncorrelated random vari-
ables; instead, it appears to resemble the normalized Gauss-
ian distribution rather closely. To facilitate comparison, we
therefore plotPkf

std against the normalized Gaussian distri-
bution (with mean zero and variance unity). It is clear from
Fig. 3 that the dotted curve is positively skewed; direct mea-
surement of the third cumulant from the data also confirms
this positive skewness behavior ofPkf

std. The most notewor-
thy feature is the longer right tail of the collapsed data than
the left tail, implying that the probability for large positive
deviation around the mean for the clock model is larger than
that of large negative deviation. This is indeed consistent
with positively skewed Pkf

std—as stated before,kkfstd
−k0stdl.0 for all snapshots.

While Fig. 3 certainly provides an example of deviation
from Gaussian statistics when the fluctuating front propaga-
tion is seen as a correlated extreme value problem, it also
provides an interesting perspective from the point of view of

FIG. 2. Top: Simulation results forkkfstd−kinl as a function of
t− tin. Bottom: Simulation results forkfkfstd−king2l as a function of
t− tin. Apart from an initial transient fort− tin&10, kfkfstd−king2l
increases linearly witht, indicating that the front wandering is dif-
fusive. Crosses correspond toN=104 (front speedv=4.08 and front
diffusion coefficientDf =0.112) and filled circles correspond toN
=105 (front speed v=4.17 and front diffusion coefficientDf

=0.056) in both figures.

FIG. 3. Pkf
std for the clock model; pluses: data forN=104 at t

= tin+99, circles: data forN=104 at t= tin+297, crosses: data for
N=105 at t= tin+198 and diamonds: data forN=105 at t= tin+396.
Solid line: normalized Gaussian distribution with mean zero and
variance unity. Dotted line: numerically obtained curve for the col-
lapsed data.
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fluctuating front propagation literature. As already mentioned
before, clock model is an example of fluctuating “pulled”
fronts, and the expression forv and the scaling forDf due to
the discrete particle stochasticity effects in the limit of as-
ymptotically large values ofN are known for the last few
years. It is also known that over a time intervalDt at larget,
the second moment ofPkf

std, i.e., kfkfsDtd−kin−vDtg2l
,2DfDt for all values of N. Figure 3, however, shows
that the information regarding the second moment is clearly
not enough to characterizePkf

std. Nevertheless, the data
collapse shows that at larget, Pkf

std; Pfskf −kin−vDtd /
Î2DfDtg /Î2DfDt (i.e., the dotted line in Fig. 3) is a charac-
teristic curve for the clock model, and this characteristic
curve is not Gaussian for the values ofN studied here. The
statement that “the front wandering is diffusive” at any value
of N for the clock model therefore has to be interpreted only
in the sense that the second moment ofPkf

std increases lin-
early with time at larget for any value ofN.

Whether the deviation of the dotted line from the Gauss-
ian is due to the fact that we have not used extremely large
values ofN is, however, not clear. It is well known that to
observe the 1/ ln2 N scaling ofsv* −vd and the 1/ ln3 N scal-
ing of Df for fluctuating “pulled” fronts one needs to takeN
extremely high[13,14]. Direct molecular dynamics simula-
tions of the clock model forN*106 are prohibitively slow.
The existing simulation methods at much higher values ofN
are not only quite intricate, but they also do not follow the
exact dynamics of the model for all clocks. This particular
point therefore is left here for further investigation in future.

IV. DISCUSSION

In this paper, we have analyzed front propagation in dis-
crete particle systems on a one-dimensional lattice as ex-

treme value problems. In these systems, the positions of the
particles can be thought of as random variables, and these
random variables under consideration are obviously strongly
correlated with each other. We have seen that in the case of
the fermionic reaction-diffusion model, the extreme value
problem follows Gaussian statistics. It clearly does not be-
long to any of the classes pertaining to extreme value statis-
tics of uncorrelated random variables. For the(Bosonic)
clock model, however, we see that the extreme value statis-
tics has a small deviation from the Gaussian, and additional
analysis (not presented here) also clearly shows that the
probability distribution does not belong to any of the known
universality classes for the extreme valus statistics of uncor-
related random variables. However, due to the unavailability
of any analytical tool, the characterization of this distribution
has proved elusive. Whether the small deviation from the
Gaussian is caused by the fact that we have not used ex-
tremely high values ofN for our simulations thus remains an
open question.
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